List of Topics
https://csci-1301.github.io/about#authors
April 5, 2024 (12:47:55 PM)
Table of Contents

For an explanation of the shortcodes labelling, please refer to our user guide.
General Concepts
Students should understand the meaning and importance of the following notions. This statement should be read as “understand the first sentence or paragraph on a wikipedia article”, taking high-level programming language as an example.
· Programming languages types and paradigms
· Machine language instructions
· Assembly instructions
· High-Level Programming Languages
· Object-oriented paradigm and data hiding
· The difference between roles (user, tester, programmer)
· How complex piece of software reuse previous pieces.
· The importance of security 🛡
· Types of attack (malware, phishing, social engineering, zero-day)
· Types of loss (loss of integrity / availability / confidentiality)
Writing and Compiling Programs
· Understand what the “flow of development” is:
· Having a goal
· Writing down specifications
· Creating the source code
· Running the compiler
· Reading the compiler’s output, warning and error messages
· Looking for documentation and help on-line and off-line
· Testing
· Making sure the program is secure 🛡
· Editing
· Reusing
· Using an IDE to
· Create a project,
· Perform some of the steps of the “flow of development”,
· Correctly save and re-open projects,
· Understand basic features of break points and debugging. ❓
The IDE used can be MonoDevelop or Visual Studio, the student can pick other IDEs if they wish but they will not be supported.
Computer Usage
· How to download and install an IDE in a secure way 🛡
· How to share and zip a project
· How to use shortcuts ❓
· How to look for on-line documentation
The Structure of a Program
First Program - Hello World
The students should understand all the components of a simple “Hello World” program:
· Comments (in line and block)
· using statements and namespace / API concepts
· blank lines and spacing
· indentation
· intro to classes and methods’ structures (body / header)
· status of Main method
· intro to Console’s Write and WriteLine
· string literal
Rules and Conventions
· The difference between a “rule” (e.g. case-sensitivity) and a “convention” (commenting your code).
· Reserved words
· Identifiers and naming conventions
· That the distinction can vary with the programming language
· Importance and role of { and }
Datatypes and Operators
Variable
· Datatype (numerical, boolean, string, character) – including a mention of reference datatypes
· Declaration, assignment, initialization
· Naming variables correctly
· The absence of default value after declaration (un-assigned variables)
Numerical Values
· Integers (int, long) – range and size, signature (uint)
· Floating Point (float, double, and decimal) – range, size and precision,
· Type casting (e.g. from int to double, and legal operations between different datatypes) and casting operator (e.g. (int)).
· Overflow and underflow 🛡
Booleans
· Possible values (true, false)
· Usage
· That boolean variables are called “switches”
Operators
· Binary arithmetic operators: *, /, %, +, -
· Unary arithmetic operators: ++, --
· The difference between postfix and infix notation for unary operators ❓
· Comparison operators: !=, ==, >, >=, <, <=
· Boolean logical operators: &&, ||, !
· Precedence and “validity” of some expressions (typically, ! 2 < 3 is not a valid expression)
· Combined assignment operators: +=, *=, -=, /=, %=
Strings
· ReadLine method
· Concatenation (+)
· Interpolation
· Additional methods: ToLower, ToUpper, Contains, StartsWith, EndsWith ❓
Displaying Strings on the Screen
· Format specifiers for numbers: – Currency (C),
· Fixed-point (F) or Number (N)
· Percent (P) ❓
· Exponential (E) ❓
· The String.Format method ❓
Characters
· Possible values and the existence of binary, oct, dec and hex representation (cf. for instance wikipedia)
· Escape character and sequences: \n, \t, \\
· Conversion between glyph and decimal value.
· Various methods: ToLower, ToUpper ❓
Lists ❓
· Creating a list of numbers or strings
· Adding items using the Add method
· Accessing items using []
· Removing and Inserting (Remove, RemoveAt, Insert)
· Count property
Basic Control Structures
Selection Statements
For each of the following structure:
· if
· if-else
· if-else if
· nested ifs
· switch
The student should understand
· Their importance,
· Their usage,
· Their syntax,
· Their flow,
· When to use one or the other,
· The common pitfalls (e.g., writing a condition in a switch).
Repetition Statements
For each of the following structure:
· foreach
· while
· for
· do{…}while(…) ❓
The student should understand:
· Their importance,
· Their usage,
· Their syntax,
· Their flow,
· When to use one or the other,
· The common pitfalls (e.g. = instead of ==, <= n vs < n)
As well as being capable of identifying the difference between
· Counter-controlled,
· Sentinel-controlled,
· User-controlled
and defining the term “accumulator”
Object-oriented programming
Class Conception
· Need and interest of specification 🛡
· UML Class diagram: interest, usage, and simple case (single class with attributes, methods and constructor).
· Access modifier (private, public)
· Principle of least privilege (private variables and methods where possible) 🛡
Class Implementation
· Attributes (and their default value, as well as how to change them)
· Get and Set methods
· Properties ❓
· Method signature
· Overloading
· Variable shadowing ❓
· Constructors: default constructor and “custom” constructor
Class Usage
· The new keyword
· Object creation using default and custom constructors
· Object manipulation: calling a method, setting an attribute, calling the ToString method implicitly.
Additional Considerations
· ToString method
· static class and methods
· Math Class (Abs, Sqrt, Pow) ❓
Random Class
· Creating a generator with new Random()
· Generating non-negative integers,
· Generating integers between ranges,
· Generating double,
· Generating a random word ❓
· Potential problems with deterministic generators 🛡
Testing and Debugging
· How to test intelligently
· How to test every instruction
· How to test boundary conditions
Interacting with Users
· Input validation 🛡
· TryParse in the int and decimal classes.
· Reading a single character from the user ❓
Data structures
Constant
· The const keyword
· Example usages (Avogadro constant, miles-to-kilometer ratio, speed of light) and use case.
· Math.PI ❓
· Static constant ❓
Enumerated Datatype ❓
· Define enumerated datatypes using enum
· Enum values (i.e. numerical values assigned to enumerated values by default) ❓
· Use enumerated datatypes (variable declaration, assignment, displaying).
Arrays
Only one-dimensional arrays should be discussed.
· Vocabulary: index (starting at 0), bounds.
· Length property
· Resize method ❓
· Different syntaxes for initializing and declaring arrays ❓
· Buffer overflow 🛡
Exceptions 🔜
· try…catch blocks
· Types of exceptions
· finally
· Defining your own exception
File I/O 🔜
· StreamWriter and StreamReader classes
· Manipulating binary and text files
· File class ❓
