Booleans
https://csci-1301.github.io/about#authors
April 5, 2024 (12:47:57 PM)
Table of Contents

This lab serves multiple goals:
· To help you manipulate boolean values,
· To practice boolean operators,
· To understand the concept of precedence,
· To practice simple mental calculations.
Truth Tables
1. Copy and paste the following code into the Main method of a new project:
· Console.WriteLine("Conjunction (and, &&) truth table:"
+ "\n\n && \t|| " + true + "\t| " + false
+ "\n--------||--------------|--------"
+ "\n" + true + "\t|| " + (true && true) + "\t| " + (true && false)
+ "\n" + false + "\t|| " + (false && true) + "\t| " + (false && false)
+ "\n\n*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\n");

Console.WriteLine("Negation (not, !) truth table:"
+ "\n\n value \t|| ! "
+ "\n--------||----------"
+ "\n" + true + "\t|| " + !(true)
+ "\n" + (!true) + "\t|| " + (!false)
+ "\n\n*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*\n");
1. Compile and execute it. This should display to the screen the truth tables for conjunction (and, &&) and negation (not, !).
1. Make sure you understand both the code and its output.
1. After the truth table for the negation, write code to display the truth tables for three binary operators:
3. the disjunction (or, ||),
3. the identity (equality, ==), and
3. the difference (inequality, !=).
· Normally, copying the truth table for the conjunction and using the find-and-replace feature of your IDE should make this a quick and easy task.
1. You can make sure you completed this exercise correctly by checking that your output matches the truth tables on Wikipedia for disjunction and equality. To check the inequality truth table, compare your output against the table for exclusive disjunction. Exclusive disjunction (XOR) is conceptually different than inequality but has the same truth table.
Precedence and Order of Evaluation
Reading and Understanding
If you read the documentation on operator precedence, you will see that operators are evaluated in a particular order. This order is also given in our notes.
For instance, ! true || false && 3 * 2 == 6 will be evaluated as
	Operation
	
	Result
	Op.

	! true || false && 3 * 2 == 6
	⇒
	false || false && 3 * 2 == 6
	!

	false || false && 3 * 2 == 6
	⇒
	false || false && 6 == 6
	*

	false || false && 6 == 6
	⇒
	false || false && true
	==

	false || false && true
	⇒
	false || false
	&&

	false || false
	⇒
	false
	||

Note that an expression like !3 > 2 does not make any sense: C# would try to take the negation of 3 (since ! has higher precedence than >), but you cannot negate the truth value of an integer! Along the same lines, an expression like false * true does not make sense; you can not multiply booleans (what would be “true times false”?)! Similarly, 3 % false will cause an error; can you see why? These are all examples of “illegal” expressions.
Solution:
3 % false would cause an error because the % operator (called the remainder operator) expects two numerical datatypes, but false is not of a numerical datatype, as it is a Boolean.
Computing Simple Boolean Expressions
Evaluate the following expressions. Try to do this “by hand,” and write your answers down on paper.
· true && false || true
· !true && false
· false || true && !false
· false == !true || false
· !(true || false || true && true)
· !(true || false) && (true && !false)
· !true || false && (true && !false)
· true != !(false || true)
Solution:
You can actually use your IDE to check your answers! Simply copy-and-paste the following in a Main method:
Console.WriteLine("The answers are:\n"
 + "true && false || true: " + (true && false || true) + "\n"
 + "!true && false: " + (!true && false) + "\n"
 + "false || true && !false: " + (false || true && !false) + "\n"
 + "false == !true || false: " + (false == !true || false) + "\n"
 + "!(true || false || true && true): " + (!(true || false || true && true)) + "\n"
 + "!(true || false) && (true && !false): " + (!(true || false) && (true && !false)) + "\n"
 + "!true || false && (true && !false): " + (!true || false && (true && !false)) + "\n"
 + "true != !(false || true): " + (true != !(false || true)) + "\n"
);
Computing Expressions Involving Booleans and Numerical Values
For each of the following expressions, decide if it is “legal” or not. If it is, give the result of its evaluation.
· 3 > 2
· 2 == 4
· 3 >= 2 != false
· 3 > false
· true && 3 + 5 * 8 == 43
· 3 + true != false
Solution:
· 3 > 2 is legal (comparing numerical values)
· 2 == 4 is legal (comparing numerical values)
· 3 >= 2 != false is legal (we first convert 3 >= 2 to True, and then test if true is different from false)
· 3 > false is not legal (a boolean value cannot be less than a numerical value)
· true && 3 + 5 * 8 == 43 is legal (+ and * are evaluated first, then == compares two numerical values, resulting in a boolean value that can be tested for equality against true)
· 3 + true != false is not legal (+ is evaluated first, but a numerical value and a boolean cannot be summed).
